التحكم في الاضطراب النشط للعاكس الكهروضوئي
مع تزايد عدد أجيال الطاقة المتجددة التي تتضمن الكثير من أجهزة إلكترونيات القدرة التي لا توفر القصور الذاتي في نظام شبكة الطاقة، بحيث تنخفض نسبة المولدات المتزامنة.
مع تزايد عدد أجيال الطاقة المتجددة التي تتضمن الكثير من أجهزة إلكترونيات القدرة التي لا توفر القصور الذاتي في نظام شبكة الطاقة، بحيث تنخفض نسبة المولدات المتزامنة.
يتم استبدال محطات الطاقة التقليدية أو زيادتها بشكل متزايد بمصادر الطاقة المتجددة (RESs) لمقارنة انبعاثات الكربون، ولسوء الحظ؛ فإن الطبيعة المتقطعة للـ (RESs).
في السنوات الأخيرة، تطورت طاقة الطاقة المتجددة مثل طاقة الرياح والخلايا الكهروضوئية (PV) بسرعة، ونظراً لأن الطاقة تولد عن طريق طاقة الرياح والطاقة الكهروضوئية العشوائية.
يوفر الاعتماد السريع لأحمال الاستخدام النهائي المتصلة فرصة للوصول إلى مستويات غير قابلة للتحقيق سابقًا من كفاءة الطاقة وتكامل الطلب الديناميكي مع عمليات الشبكة الكهربائية.
في العقد الماضي، جذبت الشبكات الصغيرة اهتماماً واسعاً من قبل الباحثين لقدرتها على توفير إمدادات طاقة مرنة والتكامل الفعال للموارد المتجددة الموزعة (DERs).
يتم اعتماد الأنظمة الكهربائية في قطاع الطيران كبديل للأجزاء الميكانيكية المضادة، بحيث لامس التوليد الكهربائي على متن الطائرة (1) ميجا فولت أمبير وهو آخذ في الارتفاع.
لقد تطور توليد طاقة الرياح بسرعة في السنوات الأخيرة، وذلك وفقاً لتقرير عالمي لطاقة الرياح صادر عن المجلس العالمي لطاقة الرياح، بحيث بلغ إجمالي السعة العالمية لطاقة الرياح.
خلال السنوات الأخيرة، زاد تغلغل أنظمة الخلايا الكهروضوئية (GCPV) القائمة على التوليد الموزع (DG) بشكل كبير، كما ويرجع ذلك إلى مزاياها المختلفة مثل تكلفة التوليد
من خلال الترويج لاتصال شبكة الطاقة الموزعة والمتطلبات الصارمة لجودة طاقة المستخدمين لإمدادات الطاقة الطرفية، تُظهر شبكة توزيع التيار المتردد التقليدية.
يتزايد تغلغل الطاقة المتجددة (RE) في شبكة الطاقة الحديثة بسرعة، بحيث تُظهر شبكات الطاقة التي تهيمن عليها إلكترونيات الطاقة قابلية عالية للتأثر بتقطع الموارد.
يتزايد الطلب على الحلول الإلكترونية الأكثر ذكاءً وذات المستوى المنخفض بسرعة في جميع التطبيقات الصناعية تقريباً، ولمواجهة هذا التحدي تتقدم صناعة إلكترونيات القدرة.
نظرًا للتلوث البيئي والاحتياطيات المحدودة من الوقود الأحفوري، تبدي صناعات السيارات اهتماماً أكبر بالمركبات الكهربائية التي تعمل بخلايا الوقود (FCEV).
تم استخدام "نقل التيار المباشر" عالي الجهد (HVDC) المستند إلى تقنية "المحول المباشر" (LCC) على نطاق واسع في جميع أنحاء العالم لنقل الطاقة منذ تطبيقه الأول قبل (60) عاماً،
يعمل الدافع نحو الموارد المتجددة على تحويل إنتاج الطاقة إلى العقد الموزعة، مما يجعل عاكس مصدر الجهد المعدل (PWM) (VSI) دائرة واجهة مستخدمة على نطاق واسع بين المصادر المتجددة.
تعد الشبكات الصغيرة مكوناً رئيسياً للشبكات الذكية لأنها تعزز قدرة نظام الطاقة على الصمود والاستدامة والاقتصاد والأمن، وفي المرحلة الأولية تم تطوير شبكات صغيرة للتيار المتردد.
مع تنفيذ "الخطة الخمسية الثالثة عشرة لتنمية الطاقة" وسياسات "التخفيف من حدة الفقر الكهروضوئية" نما عدد الخلايا الكهروضوئية في شبكة توزيع الجهد المنخفض في الصين بسرعة.
يتطلب النمو السكاني السريع التصنيع على مستوى كبير للتعامل مع احتياجاتهم، خاصة بالنسبة للدول النامية والمتخلفة، بحيث سيؤدي التطور الصناعي السريع.
نظراً لأن الدول المختلفة تولي اهتماماً كبيراً لحماية البيئة واستخدام الموارد؛ فإنه يتم دمج نسبة عالية من الطاقة الجديدة باستمرار في نظام الطاقة.
كما يستخدم المقبس اتصالاً لاسلكياً وذاكرة لتخزين البيانات الأولية، بحيث تُستخدم أيضاً دارات تكييف الإشارة الخاصة لأخذ عينات من جهد الخط وبيانات التيار والترحيل.
نما الاتجاه العالمي لاستهلاك الطاقة الكهربائية بشكل كبير في السنوات الأخيرة بسبب التنمية الاقتصادية والزيادة السكانية، ومع ذلك يحاول منظمو المرافق تقليل استهلاك المستخدم النهائي.
أصبح تكامل الشبكة لموارد الطاقة الموزعة (DERs) على مستوى توزيع الجهد المتوسط أو المنخفض سائداً يوماً بعد يوم، بحيث يضم نظام الطاقة بشكل تدريجي.
تستخدم محولات مصدر الجهد (VSI) على نطاق واسع في تطبيقات العاكس المتصلة بالشبكة الكهروضوئية (PV)، بحيث لا يمكن تشغيلها إلا في وضع باك.
تتعرض أنظمة الطاقة لمجموعة كبيرة من الاضطرابات أثناء العمليات اليومية، كما يمكن أن تؤدي الاضطرابات الشديدة مثل فقد المولد الكبير أو عطل ثلاثي الأطوار.
ينتج دخول الشبكات الصغيرة (MGs) إلى أنظمة الطاقة عن التحديات، مثل الموثوقية المتزايدة والقضايا البيئية والطلب المتزايد على الطاقة في أنظمة الطاقة نفسها.
إن التطورات الحديثة في أشباه موصلات الطاقة ومعالجات الإشارات الرقمية تدفع التقدم في تقنيات التحكم لمحولات الطاقة الإلكترونية، بحيث تم تطوير العديد من استراتيجيات التحكم.
مع وجود المزيد من المصادر المتجددة (البديلة الموزعة) والأحمال التي يمكن التحكم فيها وأنظمة تخزين الطاقة، أصبحت إدارة الجهد واحدة من أكثر القضايا أهمية في شبكة التوزيع الذكية.
اكتسبت العواكس متعددة المستويات (MLI) اهتماماً كبيراً في العقود الأخيرة بسبب فوائدها في تقليل الجهد (dv / dt ) والتوافق الكهرومغناطيسي الأكبر والتشوه التوافقي الكلي الأقل.
أصبحت وحدة قياس الطور المتزامن (PMU) ونظام قياس المنطقة الواسعة (WAMS)، والتي يمكن أن توفر قياسات السعة وزاوية الطور بتردد عالٍ (حتى 100 هرتز) وتأخير منخفض.
في الآونة الأخيرة، ومع تطور الطاقة المتجددة في غرب الصين؛ فإنه تم التخطيط للكثير من مشاريع التيار المباشر عالي الجهد (UHVDC) لنقل الطاقة الكهربائية المتجددة إلى شرق الصين.
كما تم إجراء النمذجة الديناميكية لشبكة ميكروية ذات واجهة محول بما في ذلك الأحمال الثابتة والخطوط وأجهزة (PLL) كخطوة أولى، كذلك تم تحديد وظيفة موضوعية.