ما هو الفوتون؟

اقرأ في هذا المقال


مفهوم الفوتون:

الفوتون ويسمى أيضًا الضوء الكمي، حزمة الطاقة الدقيقة للإشعاع الكهرومغناطيسي، نشأ هذا المفهوم (1905) في تفسير ألبرت أينشتاين للتأثير الكهروضوئي، والذي اقترح فيه وجود حزم طاقة منفصلة أثناء انتقال الضوء.
في وقت سابق (1900)، أعد الفيزيائي الألماني ماكس بلانك الطريق للمفهوم من خلال شرح أن الإشعاع الحراري ينبعث ويمتص في وحدات متميزة، أو كوانتا، دخل هذا المفهوم حيز الاستخدام العام بعد أن أظهر الفيزيائي الأمريكي آرثر كومبتون (1923) الطبيعة الجسدية للأشعة السينية.
مصطلح الفوتون (من اليونانية phōs ، phōtos، ضوء)، ومع ذلك، لم يستخدم حتى عام 1926، حيث أن طاقة الفوتون تعتمد على تردد الإشعاع، كما توجد فوتونات من جميع الطاقات من أشعة جاما عالية الطاقة والأشعة السينية، من خلال الضوء المرئي، إلى الأشعة تحت الحمراء وموجات الراديو منخفضة الطاقة.
تنتقل جميع الفوتونات بسرعة الضوء، حيث تعتبر الفوتونات من بين الجسيمات دون الذرية، وهي بوزونات، ليس لها شحنة كهربائية أو كتلة سكون ووحدة دوران واحدة، حيث إنها جسيمات مجال يعتقد أنها حاملات المجال الكهرومغناطيسي.

فرضية آينشتاين:

لم يقدم بلانك أساسًا ماديًا لاقتراحه الذي كان إلى حد كبير بناء رياضي مطلوب لمطابقة طيف الجسم الأسود المحسوب مع الطيف المرصود، وفي عام 1905، قدم ألبرت أينشتاين تفسيرًا فيزيائيًا رائدًا لرياضيات بلانك عندما اقترح أن الإشعاع الكهرومغناطيسي نفسه عبارة عن حبيبات تتكون من كوانتا، ولكل منها طاقة.
استند في استنتاجه إلى الحجج الديناميكية الحرارية المطبقة على مجال إشعاع يطيع قانون إشعاع بلانك، كما أن مصطلح الفوتون الذي يطبق الآن على كمية الطاقة للضوء كان قد صاغه لاحقًا الكيميائي الأمريكي جيلبرت إن لويس.

دعم آينشتاين فرضيته الخاصة بالفوتون بتحليل التأثير الكهروضوئي، وهي عملية اكتشفها هيرتز في عام 1887، والتي يتم فيها طرد الإلكترونات من سطح معدني مضاء بالضوء.
أظهرت القياسات التفصيلية أن بداية التأثير يتم تحديدها فقط من خلال تواتر الضوء وتركيب السطح، وهي مستقلة عن شدة الضوء، كان هذا السلوك محيرًا في سياق الموجات الكهرومغناطيسية الكلاسيكية، التي تتناسب طاقاتها مع شدتها ومستقلة عن التردد.
افترض آينشتاين أن الحد الأدنى من الطاقة مطلوب لتحرير الإلكترون من سطح ما، حيث أن الفوتونات هي فقط التي لديها طاقات أكبر من هذا الحد الأدنى، كما يمكنها أن تحفز انبعاث الإلكترون، هذا يتطلب حد أدنى من تردد الضوء، بالاتفاق مع التجربة.
تم التحقق تجريبياً من توقع آينشتاين لاعتماد الطاقة الحركية للإلكترونات المقذوفة على تردد الضوء، بناءً على نموذج الفوتون الخاص به بواسطة الفيزيائي الأمريكي روبرت ميليكان في عام1916.

طاقة الفوتون:

في عام 1922، عالج الأمريكي آرثر كومبتون الحائز على جائزة نوبل تشتت الأشعة السينية من الإلكترونات كمجموعة من الاصطدامات بين الفوتونات والإلكترونات، إذ أن تكييف العلاقة بين الزخم والطاقة لموجة كهرومغناطيسية كلاسيكية إلى فوتون فردي P=E/c=hf/c =h/λ، كما استخدم كومبتون قوانين حفظ الزخم والطاقة لاشتقاق تعبير عن انزياح الطول الموجي للفوتون المبعثر من الأشعة السينية كدالة لزاوية التشتت.
تطابقت صيغته مع نتائجه التجريبية واعتُبر تأثير كومبتون بحيث أصبح دليلًا مقنعًا إضافيًا لوجود جسيمات الإشعاع الكهرومغناطيسي، كما أن طاقة الفوتون من الضوء المرئي صغيرة جدًا، في حدود 4 × 10−19 جول، ووحدة الطاقة الأكثر ملاءمة في هذا النظام هي الإلكترون فولت (eV).
يساوي إلكترون واحد الطاقة التي يكتسبها إلكترون عندما يتغير جهده الكهربائي بمقدار فولت واحد: 1 فولت = 1.6 × 10−19 جول، كما يشمل طيف الضوء المرئي فوتونات ذات طاقات تتراوح من حوالي 1.8 فولت (ضوء أحمر) إلى حوالي 3.1 فولت (ضوء بنفسجي).
لا تستطيع الرؤية البشرية اكتشاف الفوتونات الفردية، على الرغم من أنه في ذروة استجابتها الطيفية (حوالي 510 نانومتر، باللون الأخضر)، إذ تقترب العين المتكيفة مع الظلام، وفي ظل ظروف النهار العادية، فإن الطبيعة المنفصلة للضوء الذي يدخل العين البشرية محجوبة تمامًا بسبب العدد الكبير جدًا من الفوتونات المعنية.
على سبيل المثال، ينبعث مصباح قياسي بقدرة 100 وات بترتيب 1020 فوتونًا في الثانية على مسافة 10 أمتار من المصباح، وربما يدخل 1011 فوتونًا في الثانية تلميذًا مضبوطًا بشكل طبيعي يبلغ قطره 2 مم.

تتميز فوتونات الضوء المرئي بأنها نشطة بما يكفي لبدء بعض التفاعلات الكيميائية المهمة للغاية، وأبرزها التمثيل الضوئي من خلال امتصاص جزيئات الكلوروفيل، حيث تم تصميم الأنظمة الكهروضوئية لتحويل الطاقة الضوئية إلى طاقة كهربائية من خلال امتصاص المواد شبه الموصلة للفوتونات المرئية.
يمكن لفوتونات الأشعة فوق البنفسجية الأكثر نشاطًا (4 إلى 10 فولت) بدء تفاعلات كيميائية ضوئية مثل التفكك الجزيئي والتأين الذري والجزيئي، تعتمد الطرق الحديثة للكشف عن الضوء على استجابة المواد للفوتونات الفردية، حيث تقوم الكاشفات الضوئية مثل: الأنابيب المضاعفة الضوئية بجمع الإلكترونات المنبعثة من التأثير الكهروضوئي، كما يتسبب امتصاص الفوتون في الكاشفات الضوئية في حدوث تغيير في موصلية مادة شبه موصلة.
إن عدد من التأثيرات الدقيقة للجاذبية على الضوء التي تنبأت بها نظرية النسبية العامة لآينشتاين يمكن فهمها بسهولة في سياق نموذج الفوتون للضوء ومع ذلك، لاحظ أن النسبية العامة ليست في حد ذاتها نظرية لفيزياء الكم.
من خلال المعادلة النسبية الشهيرة E = mc2 ، يمكن اعتبار أن فوتون التردد f والطاقة E = hf له كتلة فعالة m = hf / c2، حيث أن هذه الكتلة الفعالة تختلف عن كتلة السكون للفوتون، وهي صفر.
تتنبأ النسبية العامة بأن مسار الضوء ينحرف في مجال الجاذبية لجسم ضخم، يمكن أن يُفهم هذا بطريقة مبسطة إلى حد ما على أنه ناتج عن جاذبية تتناسب مع الكتلة الفعالة للفوتونات، بالإضافة إلى ذلك، عندما ينتقل الضوء نحو جسم ضخم فستزداد طاقته، وبالتالي يزداد تردده (الانزياح الأزرق الجاذبي)، حيث يصف الانزياح الأحمر الثقالي الحالة المعاكسة، كما يفقد الضوء الذي يبتعد عن جسم ضخم الطاقة وينخفض ​​تردده.

ازدواجية الموجة – الجسيم:

يتم إنتاج نفس نمط التداخل الموضح في تجربة يونج ذات الشق المزدوج عندما تصطدم حزمة من المادة، مثل الإلكترونات، بجهاز ذي شق مزدوج بالتركيز على الضوء، حيث يوضح نمط التداخل بوضوح خصائصه الموجية.
لكن ماذا عن خصائصه الجسيمية؟ هل يمكن تتبع فوتون فردي من خلال الجهاز ذي الشقين، وإذا كان الأمر كذلك، فما هو أصل نمط التداخل الناتج؟ ينتج عن تراكب موجتين، واحدة تمر عبر كل شق والنمط في جهاز يونغ، ومع ذلك إذا اعتبر الضوء مجموعة من الفوتونات الشبيهة بالجسيمات، فيمكن لكل منها المرور عبر شق واحد فقط أو آخر، وبعد فترة وجيزة من فرضية آينشتاين للفوتون في عام 1905، اقترح أن نمط التداخل ثنائي الشق قد يكون ناتجًا عن تفاعل الفوتونات التي مرت عبر شقوق مختلفة.
تم استبعاد هذا التفسير في عام 1909 عندما أبلغ الفيزيائي الإنجليزي جيفري تايلور عن وجود نمط حيود في ظل إبرة مسجلة على لوحة فوتوغرافية معرضة لمصدر ضوء ضعيف للغاية، حيث أنه كان ضعيف بدرجة كافية بحيث لا يمكن أن يوجد سوى فوتون واحد في الجهاز في أي وقت، ولم تكن الفوتونات تتداخل مع بعضها البعض، بل أن كل فوتون يساهم في نمط الانعراج بمفرده.
في الإصدارات الحديثة من تجربة التداخل ثنائي الشق هذه يتم استبدال لوحة التصوير بجهاز كشف قادر على تسجيل وصول الفوتونات الفردية، حيث يصل كل فوتون كاملًا وسليمًا عند نقطة واحدة على الكاشف.
من المستحيل التنبؤ بموضع وصول أي فوتون واحد، لكن التأثير التراكمي للعديد من تأثيرات الفوتونات المستقلة على الكاشف يؤدي إلى التراكم التدريجي لنمط التداخل، وبالتالي فإن حجم نمط التداخل الكلاسيكي عند أي نقطة هو مقياس لاحتمال وصول فوتون واحد إلى تلك النقطة.
إن تفسير هذا السلوك الذي يبدو متناقضًا يتقاسمه الضوء والمادة، والذي تنبأت به قوانين ميكانيكا الكم، فقد نوقش من قبل المجتمع العلمي منذ اكتشافه قبل أكثر من 100 عام، كما لخص الفيزيائي الأمريكي ريتشارد فاينمان الوضع في عام 1965 بطريقة غير متوقعة تمامًا، حيث حلت ميكانيكا الكم الجدل الطويل للموجة والجسيمات حول طبيعة الضوء من خلال رفض كلا النموذجين.
لا يمكن حساب سلوك الضوء بالكامل بواسطة نموذج الموجة الكلاسيكي أو نموذج الجسيمات الكلاسيكي، حيث أن هذه الصور مفيدة في الأنظمة الخاصة بكل منها، لكنها في النهاية أوصاف تقريبية ومكملة لواقع أساسي موصوف ميكانيكيًا كميًا.

البصريات الكمومية:

تعد البصريات الكمومية وهي دراسة وتطبيق التفاعلات الكمومية للضوء مع المادة مجالًا نشطًا ومتوسعًا للتجربة والنظرية، حيث سمح التقدم في تطوير مصادر الضوء وتقنيات الكشف منذ أوائل الثمانينيات باختبارات بصرية متطورة بشكل متزايد لأسس ميكانيكا الكم.
تم توضيح التأثيرات الكمية الأساسية مثل تداخل الفوتون الفردي، إلى جانب المزيد من القضايا الباطنية مثل معنى عملية القياس، بشكل أكثر وضوحًا، كما تم إنشاء حالات متشابكة لفوتونين أو أكثر بخصائص شديدة الارتباط مثل اتجاه الاستقطاب واستخدامها لاختبار القضية الأساسية لعدم التواجد في ميكانيكا الكم.

المصدر: كتاب قصة الفيزياء لويد موتزاكتشافات واراء جاليليو جاليليو جاليليكتاب تطور الافكار في الفيزياء البرت اينشتاين مقدمة في ميكانيكا الكم بي تي ماثيوز


شارك المقالة: