التأثير الكهروضوئي - Photoelectric effect

اقرأ في هذا المقال


ما هو التأثير الكهروضوئي؟

التأثير الكهروضوئي: هي ظاهرة يتم فيها إطلاق الجسيمات المشحونة كهربائياً من أو داخل مادة ما عندما تمتص الإشعاع الكهرومغناطيسي. يُعرَّف التأثير غالباً بأنّه طرد الإلكترونات من لوحة معدنية عند سقوط الضوء عليها.

في تعريف أوسع، قد تكون الطاقة المشعة مثل الأشعة تحت الحمراء أو المرئية أو فوق البنفسجية أو الأشعة السينية أو أشعة جاما، قد تكون المادة صلبة أو سائلة أو غازية، والجسيمات المنبعثة قد تكون أيونات “ذرات أو جزيئات مشحونة كهربائياً” بالإضافة إلى إلكترونات.

كانت هذه الظاهرة مهمة بشكل أساسي في تطور الفيزياء الحديثة بسبب الأسئلة المحيرة التي أثارتها حول طبيعة الضوء “الجسيمات مقابل السلوك الموجي” والتي تم حلها أخيراً بواسطة “ألبرت أينشتاين” في عام (1905م). يظل التأثير مهماً للبحث في مجالات من علم المواد إلى الفيزياء الفلكية، وكذلك تشكيل الأساس لمجموعة متنوعة من الأجهزة المفيدة.

اكتشاف التأثير الكهروضوئي والعمل المبكر:

تم اكتشاف التأثير الكهروضوئي عام (1887م) من قبل الفيزيائي الألماني “هاينريش رودولف هيرتز”. فيما يتعلق بالعمل على موجات الراديو، لاحظ “هيرتز” أنّه عندما يضيء الضوء فوق البنفسجي على قطبين معدنيين بجهد مطبق عبرهما، فإنّ الضوء يغير الجهد الذي يحدث عنده شرارة.

تم توضيح هذه العلاقة بين الضوء والكهرباء “ومن ثمّ الكهروضوئية” في عام (1902م) من قبل فيزيائي ألماني آخر، “فيليب لينارد”. أظهر أنّ الجسيمات المشحونة كهربائياً يتم تحريرها من سطح معدني عندما يكون مضاءً وأنّ هذه الجسيمات متطابقة مع الإلكترونات التي اكتشفها الفيزيائي البريطاني “جوزيف جون طومسون” في عام (1897م).

أظهر المزيد من البحث أنّ التأثير الكهروضوئي يمثل تفاعلاً بين الضوء والمادة لا يمكن تفسيره بالفيزياء الكلاسيكية، التي تصف الضوء على أنّه موجة كهرومغناطيسية. كانت إحدى الملاحظات التي لا يمكن تفسيرها هي أنّ الطاقة الحركية القصوى للإلكترونات المحررة لم تتغير مع شدة الضوء، كما هو متوقع وفقاً لنظرية الموجة، ولكنّها كانت متناسبة بدلاً من ذلك مع تردد الضوء.

ما حددته شدة الضوء هو عدد الإلكترونات المنبعثة من المعدن (تقاس كتيار كهربائي). ملاحظة أخرى محيرة هي أنه لم يكن هناك تقريباً أي فارق زمني بين وصول الإشعاع وانبعاث الإلكترونات.

شرح التأثير الكهروضوئي رياضيا:

أدى النظر في هذه السلوكيات غير المتوقعة إلى قيام “ألبرت أينشتاين” بصياغة نظرية جسيمية جديدة للضوء في عام (1905م) حيث يحتوي كل جسيم من الضوء أو الفوتون على كمية ثابتة من الطاقة، أو الكم، والتي تعتمد على تردد الضوء.

على وجه الخصوص، يحمل الفوتون طاقة (E) تساوي (hf)، حيث (f) هو تردد الضوء و(h) هو الثابت العالمي الذي اشتقاه الفيزيائي الألماني “ماكس بلانك” في عام (1900م) لشرح توزيع الطول الموجي لإشعاع الجسم الأسود، أي، الكهرومغناطيسية والإشعاع المنبعث من جسم ساخن.

معادلة التأثير الكهروضوئي:

يمكن أيضاً كتابة العلاقة بالشكل المكافئ:

E = hc / λ

حيث:

c – هي سرعة الضوء.

λ – هو الطول الموجي.

مما يدل على أنّ طاقة الفوتون تتناسب عكسياً مع الطول الموجي.

افترض “أينشتاين” أنّ الفوتون سوف يخترق المادة وينقل طاقته إلى إلكترون. عندما يتحرك الإلكترون عبر المعدن بسرعة عالية ويخرج أخيراً من المادة، ستقل طاقته الحركية بمقدار (ϕ) يسمى وظيفة العمل “على غرار وظيفة العمل الإلكترونية”، والتي تمثل الطاقة اللازمة للإلكترون للهروب من معدن. من خلال الحفاظ على الطاقة، قاد هذا المنطق “أينشتاين” إلى المعادلة الكهروضوئية:

Ek = hf – ϕ

حيث:

Ek هي الطاقة الحركية القصوى للإلكترون المقذوف.

على الرغم من أنّ نموذج “أينشتاين” وصف انبعاث الإلكترونات من صفيحة مضيئة، إلا أنّ فرضيته للفوتون كانت جذرية بدرجة كافية بحيث لم يتم قبولها عالمياً حتى تلقت مزيداً من التحقق التجريبي.

حدث المزيد من الإثبات في عام (1916م) عندما تحققت القياسات الدقيقة للغاية من قبل الفيزيائي الأمريكي “روبرت ميليكان” من معادلة “أينشتاين” وأظهرت بدقة عالية أنّ قيمة “ثابت أينشتاين” كانت هي نفسها “ثابت بلانك”. حصل أينشتاين أخيراً على جائزة نوبل في الفيزياء عام (1921م) لشرح التأثير الكهروضوئي.

مبادئ الكهروضوئية:

وفقاً لميكانيكا الكم، تحدث الإلكترونات المرتبطة بالذرات في تكوينات إلكترونية محددة. يُعرف تكوين الطاقة الأعلى أو نطاق الطاقة الذي تشغله الإلكترونات عادةً لمادة معينة باسم نطاق التكافؤ، وتحدد الدرجة التي يتم ملؤها بشكل كبير التوصيل الكهربائي للمادة.

في الموصل النموذجي “معدن”، يكون شريط التكافؤ مملوءاً نصفه تقريباً بالإلكترونات، والتي تنتقل بسهولة من ذرة إلى ذرة، وتحمل تياراً. في عازل جيد، مثل الزجاج أو المطاط، يُملأ شريط التكافؤ، وتكون إلكترونات التكافؤ هذه قليلة جدًا في الحركة.

الموصلية الضوئية:

مثل العوازل، تمتلئ أشباه الموصلات عموماً نطاقات التكافؤ، ولكن على عكس العوازل، فإنّ القليل جداً من الطاقة مطلوب لإثارة إلكترون من نطاق التكافؤ إلى نطاق الطاقة التالي المسموح به والمعروف باسم “نطاق التوصيل”، لأنّ أي إلكترون متحمس لهذه الطاقة الأعلى المستوى مجاني نسبياً.

على سبيل المثال، تبلغ “فجوة النطاق” بالنسبة للسيليكون (1.12) فولت “إلكترون فولت”، وتبلغ فجوة زرنيخيد الغاليوم (1.42) فولت. يقع هذا في نطاق الطاقة التي تحملها فوتونات الأشعة تحت الحمراء والضوء المرئي، والتي يمكنها بالتالي رفع الإلكترونات في أشباه الموصلات إلى نطاق التوصيل.

اعتماداً على كيفية تكوين مادة أشباه الموصلات، قد يعزز هذا الإشعاع الموصلية الكهربائية عن طريق إضافة إلى تيار كهربائي ناتج بالفعل عن جهد مطبق، أو قد يولد جهداً بشكل مستقل عن أي مصادر جهد خارجي.

تنشأ الموصلية الضوئية من الإلكترونات المحررة بواسطة الضوء ومن تدفق الشحنة الموجبة أيضاً. تتوافق الإلكترونات المرفوعة إلى نطاق التوصيل مع الشحنات السالبة المفقودة في نطاق التكافؤ، والتي تسمى “الثقوب”. تعمل كل من الإلكترونات والثقوب على زيادة تدفق التيار عند إضاءة أشباه الموصلات.

الجهد الكهربائي والتأثير الكهروضوئي:

في التأثير الكهروضوئي، يتم إنشاء جهد عندما يتم فصل الإلكترونات المحررة بواسطة الضوء الساقط عن الثقوب الناتجة، مما ينتج عنه فرق في الجهد الكهربائي. يتم ذلك عادةً باستخدام تقاطع (pn) بدلاً من شبه موصل نقي. يحدث تقاطع (pn) عند المنعطف بين أشباه الموصلات من النوع (p – الموجب) والنوع (n – السالب).

يتم إنشاء هذه المناطق المعاكسة عن طريق إضافة شوائب مختلفة لإنتاج إلكترونات زائدة (نوع n) أو ثقوب زائدة (نوع p). تحرر الإضاءة الإلكترونات والثقوب الموجودة على جوانب متقابلة من التقاطع لإنتاج جهد عبر التقاطع يمكنه دفع التيار، وبالتالي تحويل الضوء إلى طاقة كهربائية.

الإشعاع والتأثير الكهروضوئي:

تحدث التأثيرات الكهروضوئية الأخرى بسبب الإشعاع عند الترددات العالية، مثل الأشعة السينية وأشعة جاما. يمكن للفوتونات عالية الطاقة هذه إطلاق الإلكترونات بالقرب من النواة الذرية، حيث تكون مرتبطة بإحكام. عندما يتم إخراج مثل هذا الإلكترون الداخلي، ينخفض بسرعة إلكترون خارجي ذو طاقة أعلى لملء الفراغ.

ينتج عن الطاقة الزائدة انبعاث إلكترون واحد أو أكثر من الذرة، وهو ما يسمى “تأثير أوجيه”. يُرى أيضاً في طاقات الفوتون العالية “تأثير كومبتون”، الذي ينشأ عندما يصطدم فوتون من الأشعة السينية أو أشعة جاما بإلكترون. يمكن تحليل التأثير من خلال نفس المبادئ التي تحكم التصادم بين أي جسمين، بما في ذلك الحفاظ على الزخم.

يفقد الفوتون طاقة للإلكترون، وهو انخفاض يتوافق مع زيادة طول موجة الفوتون وفقاً لعلاقة أينشتاين (E = hc / λ). عندما يكون الاصطدام مثل الإلكترون وجزء الفوتون بزاوية قائمة مع بعضهما البعض، يزداد الطول الموجي للفوتون بمقدار مميز يسمى “الطول الموجي كومبتون”، (2.43 × 10-12) متر.

المصدر: Photoelectric effectPhotoelectric Effect7.4: Photoelectric Effect


شارك المقالة: