الموازنة اللامركزية لاستعادة خدمات توزيع القدرة الكهربائية
في النهاية؛ فإن الحل المقترح القائم على العوامل والكتل هو نهج هجين مرن (مركزي ولا مركزي) لمشكلة الاستعادة المعنية بخدمة توفير المركزية بواسطة عامل كتلة واحد.
في النهاية؛ فإن الحل المقترح القائم على العوامل والكتل هو نهج هجين مرن (مركزي ولا مركزي) لمشكلة الاستعادة المعنية بخدمة توفير المركزية بواسطة عامل كتلة واحد.
مع الطلب العالمي المتزايد على الكهرباء والرغبة في خفض انبعاثات ثاني أكسيد الكربون، هناك حاجة إلى الانتقال من الوقود الأحفوري إلى الطاقة المستدامة،
أصبحت المحركات الكهربائية المتغيرة السرعة عالية الطاقة (VSD) بمثابة العمود الفقري للعديد من الصناعات وتطبيقات الطاقة المتجددة، كما أنه تم تقديم المحولات متعددة المستويات.
في الأنظمة الإلكترونية الحديثة، يتم استخدام محول تيار مستمر منخفض الطاقة على نطاق واسع لخفض جهد الناقل لوحدات التحكم وأجهزة الاستشعار وأنواع كثيرة من الدوائر على الرقاقة.
نظراً للتطور التكنولوجي المستدام والإمكانيات الكبيرة للطاقة الحرارية الشمسية المركزة (CSTE)؛ فمن المحتمل أن تلعب دوراً رئيسياً في سوق الطاقة في المستقبل.
مع تطور الطاقة الكهربائية الجديدة، تم تطبيق طوبولوجيا متعددة المستويات المتتالية للجسر (H)، وذلك بشكل متكرر في التحكم في تدفق الطاقة والمحولات الإلكترونية.
أدت المخاوف السكانية والبيئية المتزايدة إلى زيادة الطلب على مصادر الطاقة النظيفة، حيث تم بذل جهود هائلة لاستكشاف مصادر الطاقة المتجددة، مثل الخلايا الكهروضوئية وطاقة الرياح وخلايا الوقود.
يتم ربط عدد متزايد من الأحمال غير الخطية في شبكات الطاقة، والتي تقدم التوافقيات والقدرة التفاعلية بحيث تسبب المركبات التوافقية العديد من المشكلات في "الأجهزة الكهربائية".
مع استمرار زيادة نسبة مصادر الطاقة المتجددة في الشبكة الكهربائية؛ فإنه يتم إنشاء المزيد والمزيد من محطات الطاقة المتجددة في المناطق النائية،
يعد التحكم المرن والجدولة الزمنية للوحدات التي يمكن التحكم فيها في شبكة التوزيع طريقة فعالة لاستهلاك المولدات الموزعة المتزايدة (DG).
بشكل عام، يعد "التوازن ثلاثي الأطوار" هو الوضع المثالي لنظام القدرة وجودة الطاقة الكهربائية المقدمة، ومع ذلك؛ فإن عدم توازن الجهد قد يؤدي إلى تأثير أسوأ على جودة الطاقة الكهربائية.
يُعرَّف الجهد الكهربائي بأنّه مقدار الشغل اللازم لتحريك شحنة الوحدة من نقطة مرجعية إلى نقطة محددة مقابل المجال الكهربائي، عندما يتحرك جسم ما مقابل المجال الكهربائي.
تتغير طبيعة وخصائص أنظمة التوزيع باستمرار مع زيادة اختراق موارد الطاقة الموزعة، ومع هذا أصبحت الحاجة إلى فحص تفاعل النقل والتوزيع الكهربائي (T&D) أثناء تقييم أمان الجهد أمراً كبيراً.
أدى الانخفاض المستمر في تكلفة توليد الطاقة الكهروضوئية إلى تعزيز النمو السريع للمنشآت الكهروضوئية، لذلك من المتوقع أن تكون الطاقة الشمسية إحدى الطاقات المهيمنة في المستقبل.
أدى النمو السريع للاقتصاد العالمي وتحسين مستويات معيشة الناس إلى زيادة الطلب على الكهرباء، مما أدى إلى سلسلة من المشكلات مثل استقرار النظام وجودة الطاقة وتحسين القدرة التفاعلية
يتزايد استخدام المولدات الموزعة (DGs) باستمرار، وبالتالي يصبح تخطيط وتشغيل شبكات توزيع الكهرباء أكثر تعقيداً، وذلك مع (DGs) في شبكة التوزيع
تم تطوير نموذج هرمي من أجل تمكين مشغلي نظام (ADS) من معالجة مشكلة تنظيم الجهد في الشبكة الكهربائية، كما لوحظ أن الأساليب التقليدية لتنظيم الجهد.
مع زيادة حمل الطاقة غير الخطي وبقاء بنية شبكة التوزيع الكهربائية أكثر تعقيداً؛ تصبح مشاكل جودة الطاقة أكثر خطورة، وعلى وجه الخصوص؛ فإنه يمكن أن تؤثر مشكلة جودة الجهد.
يُعرَّف ترهل الجهد الكهربائي على أنه انخفاض يتراوح بين (0.1) و (0.9) وحدة دولية، وفي جذر متوسط التربيع (RMS) الجهد أو التيار الكهربائي عند تردد الطاقة لمدة (0.5) دورة إلى (1) دقيقة.
يمكن أن ينتج الجهد غير المتوازن في نظام الطاقة عن أخطاء متناظرة والتوزيع غير المتكافئ للأحمال مثل محركات الجر الكهربائية، وبدء تشغيل المحركات الصناعية الكبيرة.
تخضع البيئة المبنية لتغيير كبير في كيفية استخدامها وإدارتها وتفاعلها مع الطاقة الكهربائية، كما ويرجع ذلك إلى التقدم التكنولوجي وجهود كفاءة الطاقة واستجابة الطلب وموارد الطاقة الموزعة.
تعد تقنية نقل التيار المباشر عالي الجهد متعدد الأطراف (HVDC) وتقنية شبكة التيار المستمر من الطرق الفعالة لحل مشاكل تكامل الطاقة المتجددة، ومع ذلك يلزم وجود محول تيار مستمر.
مع زيادة نشر الطاقات المتجددة، واجهت أنظمة الطاقة الحديثة العديد من التحديات فيما يتعلق بتصميم النظام وتشغيله والتحكم فيه، كما أصبحت ضرورة اكتشاف وحدات تحكم جديدة.
ينم الاعتماد على (microgrid) لأنه يوفر الفوائد المحتملة من الموثوقية والأمان والكفاءة وكونها صديقة للبيئة، بحيث تزايدت مشاركة الشبكة المصغرة في سوق الطاقة المركزي.
يُظهر منحنى الجهد الكهربائي (P-U) للصفيف الكهروضوئي نقاط طاقة متعددة، مما يوفر تتبعاً سريعًاً ودقيقاً لنقطة الطاقة القصوى العالمية، وبالنظر إلى الخصائص اللاخطية والسمات متعددة الذروة لمنحنى خرج صفيف (PV) في ظل حالة الظل الجزئي
تم تقديم أنظمة الشبكة الذكية كحل فعال لأزمة الطاقة العالمية، ونظراً لخصائصها المتأصلة في الاتصال والتحكم والتحسين التي يمكن أن تؤدي إلى التوازن في الوقت الفعلي.
يتم الحصول على التعبير التحليلي لتيار نقطة الخلل الذي يختلف مع الوقت، وهنا يتم تقديم مزيد من التحليل لخصائص الخطأ التي تختلف باختلاف المساحة.
التنمية الصناعية الموفرة للطاقة مطلوبة بشدة، ومع ذلك؛ فإن النظم الصناعية الحديثة تدمج تقنيات المعلومات والاتصالات (ICT) مثل الحوسبة عالية الأداء والشبكات التي زادت من استهلاك الطاقة.
مع تطوير توليد الطاقة الكهروضوئية (PV)، تم فحص التقنيات ذات الصلة بشكل كامل وتطبيقها على نطاق واسع، بحيث تحتوي محولات مصدر الجهد (VSI) على تقنيات تطبيق أكثر نضجاً.
شهد العقد الماضي اهتماماً أكاديمياً واسعاً بالآلات الكهربائية متعددة المراحل (الأطوار) وأنظمة التشغيل للتطبيقات الصناعية المختلفة، كما يمكن القول إن الاهتمام بأنظمة ترتيب المرحلة العالية.