اقرأ في هذا المقال
- مفهوم مثلث متساوي الأضلاع
- خصائص مثلث متساوي الأضلاع
- كيف تحسب زوايا مثلث متساوي الأضلاع؟
- كيف يتم إيجاد زوايا المثلث عن طريق أضلاعه إذا كنا لا نعرف أي زاوية من زواياه؟
مفهوم مثلث متساوي الأضلاع:
مثلث المتساوي الأضلاع: هو عبارة عن شكل هندسي ثنائي الأبعاد، فهو المثلث الذي تكون أضلاعه الثلاثة متساوية وزواياه الثلاثة أيضاً متساوية، بما أنّ حاصل مجموع زوايا المثلث يساوي 180 درجة، فهو بالتالي جميعها تكون متساوية، إذا أردنا حساب قيمة كل زاوية نقوم بتقسيم 180 درجة على حسب عدد الزوايا، فنحصل على 60 درجة لكل زاوية،بما معناه أنّ كل زاوية في المثلث تساوي 60 درجة.
خصائص مثلث متساوي الأضلاع:
- المثلثات المتساوية الأضلاع جميعها تكون متشابهة وغير متماثلة.
- يعتبر المثلث المتساوي الأضلاع حالة خاصة من حالات المثلثات متساوية الساقين.
- إنّ حاصل مجموع قياسات زواياه = 180 درجة.
- إنّ العمود النازل من رأس المثلث إلى القاعدة يسمّى الارتفاع وينصف القاعدة.
- محيط المثلث = مجموع أطوال أضلاعه ومساحة المثلث= 0.5 × القاعدة × الارتفاع .
- تكون جميع زواياه متساوية وقياس كل منها 60 درجة.
كيف تحسب زوايا مثلث متساوي الأضلاع؟
للقيام بعملية حساب زوايا المثلث بشكل عام فيجب علينا معرفة بأنّ مجموع زوايا أي مثلث تساوي 180، إلّا المثلث متساوي الأضلاع يتميز بأنّه زواياه الثلاثة تكون متساوية، لنفرض أنّ الزاوية هي س، وبالتالي سيكون حساب زواياه كالتالي:
سيكون لدينا: س+س+س= 180
3س= 180
بقسمة طرفي المعادلة على 3 يكون الناتج: س= 60، وبالتالي فجميع زواياه تساوي 60.
كيف يتم إيجاد زوايا المثلث عن طريق أضلاعه إذا كنا لا نعرف أي زاوية من زواياه؟
بما أنّ المثلث يتألف من ثلاث زوايا تحتوي على رؤوس بحيث تقوم الأضلاع بالوصل بينهم، فإنّ حاصل مجموع زوايا المثلث الداخلية عبارة عن 180 درجة، ليتم معرفة قياس الزوايا لأي مثلث يجب أن نقوم بمعرفة هو من فئة من أنواع تلك المثلثات بالإضافة إلى النسب المثلثية وكيفية العلاقة بينهما، كذلك حاصل مجموع أي زاوية خارجية من المثلث بأنّها تكون تساوي مجموع الزاويتين الداخليتين البعيدتين.
لمعرفة زوايا المثلث، لابد من التنويه على أنه يوجد مثلث قائم الزاوية وحاد الزاوية ومنفرج الزاوية، أمّا أنواع المثلث من ناحية الأضلاع ثلاث أنواع فهي: المثلث المتساوي الضلعين ففي هذا النوع لابد من الأخذ بعين الاعتبار بأنّه تتساوى الزاويتين المتقابلتين عند القاعدة كذلك المثلث المتساوي الأطراف، فتتساوى كل من قياس الزوايا الثلاث بذلك يكون كل زاوية 60 درجة، بالنسبة للمثلث المختلف الأطراف فإنّ زواياه تكون مختلفة القياسات فمن الممكن أن يتم إيجاد قياس الزوايا من خلال المنقلة أوعن طريق الطرق الحسابية.