ازدحام الطاقة الأولية لأنظمة القدرة الكهربائية
بدءاً من إنشاء أول محطة للطاقة الحرارية في عام 1875م؛ فقد أصبحت أنظمة الطاقة الحديثة الأكبر ومن بين أكثر الأنظمة التي صنعها الإنسان تعقيداً.
بدءاً من إنشاء أول محطة للطاقة الحرارية في عام 1875م؛ فقد أصبحت أنظمة الطاقة الحديثة الأكبر ومن بين أكثر الأنظمة التي صنعها الإنسان تعقيداً.
النمو السكاني والتقدم في التقنيات والاقتصاد الاجتماعي هو إلى حد كبير، مما أدى إلى زيادة الطلب من العقود القليلة الماضية على استهلاك الطاقة والمواد.
سمح دمج التقنيات الجديدة في شبكات التوزيع الكهربائية، مثل موارد الطاقة الموزعة (DER) والبنية التحتية المتقدمة للقياس (AMI)، وذلك بتشغيل الشبكة الديناميكي والحديث.
في السنوات الأخيرة، كانت هناك محاولات عديدة لتوفير الطاقة من خلال تصور مقدار استهلاك الطاقة في المنزل والتحكم في المعدات المستهلكة للطاقة مثل مكيفات الهواء.
تعتبر محطات الطاقة الكهرومائية الصغيرة (SHPs) هي مصادر طاقة متجددة معروفة بإنتاج طاقة متوقع، على الأقل على المدى القصير، وذلك مقارنة بأنواع أخرى من مصادر الطاقة المتجددة.
نظراً لأن الدول المختلفة تولي اهتماماً كبيراً لحماية البيئة واستخدام الموارد؛ فإنه يتم دمج نسبة عالية من الطاقة الجديدة باستمرار في نظام الطاقة.
بدافع من الجوانب التكنولوجية والاقتصادية والبيئية، كما يتزايد تكامل موارد الطاقة المتجددة في شبكات الطاقة على مستوى العالم، بحيث ترتبط معظم وحدات الطاقة المتجددة.
يكتسب مفهوم (Microgrids-MGs) زخماً كبيراً كحل رئيسي وفعال من حيث التكلفة لدمج موارد الطاقة الموزعة (DERs) في شبكات الطاقة الكهربائية.
يعتبر نقل وتوزيع الكهرباء من خدمات الطاقة الحيوية للمجتمعات على مستوى العالم، كما وتدعم الخدمات الحيوية مثل الاتصالات السلكية واللاسلكية وخدمات المياه والنقل والتعليم.
في الآونة الأخيرة، يتم تعزيز (DC Microgrids) باستمرار لتلبية الحاجة إلى زيادة الطلب المستمر على الطاقة ولقد وجدت مصادر الطاقة المتجددة مثل الخلايا الكهروضوئية.
مع تطور الطاقة الكهربائية الجديدة، تم تطبيق طوبولوجيا متعددة المستويات المتتالية للجسر (H)، وذلك بشكل متكرر في التحكم في تدفق الطاقة والمحولات الإلكترونية.
في السنوات الأخيرة، ومع الانخفاض الهائل في الطاقة الأحفورية على الأرض والطلب الإنمائي للشبكة الذكية الحديثة ومشاكل الطاقة والبيئة في المجتمع منخفض الكربون.
في الوقت الحاضر، تم تطبيق تكنولوجيا الطاقة الإلكترونية على نطاق واسع في نظام الطاقة، بما في ذلك المجالات الصناعية والزراعية والعامة والمدنية وغيرها من المعدات الكهربائية،
أصبحت الشبكات الكهربائية السكنية منخفضة الجهد (LV) إحدى طليعة البحث والتطوير في الشبكة الذكية بسبب عدد من الابتكارات في جانب الطلب،
بالنظر إلى جميع تقنيات الطاقة المتجددة، يتمتع التوليد الموزع للطاقة الكهروضوئية (PVDG) بواحد من أكثر إمكانات النمو الواعدة في جميع أنحاء العالم.
لقد أصاب اكتشاف السلوكيات الكهربائية غير الطبيعية شركات تشغيل الطاقة في الصين بسبب العديد من أخطاء نظام الطاقة وتقليل الأرباح بسبب الاستهلاك غير الطبيعي للكهرباء
تسببت الكمية المتزايدة من غازات الدفيئة (GHG) في ظاهرة الاحتباس الحراري وأضرار بيئية؛ فإن المصادر الرئيسية لغازات الاحتباس الحراري هي النقل وإنتاج الكهرباء والصناعة التحويلية.
تم بناء أنظمة الطاقة التقليدية على افتراض أن التوليد تم التحكم فيه من خلال عدد قليل من مرافق التوليد المركزية التي تم تصميمها لخدمة الأحمال السلبية إلى حد ما.
تم تعزيز الإقبال الكبير على الطاقة الكهروضوئية على الأسطح من خلال السياسات الحكومية وخطط الدعم في العديد من البلدان في أوروبا وخارجها.
مع الموثوقية المعززة للأجهزة الإلكترونية للقدرة؛ فإنه تم تحسين مستوى الاستقرار والجهد لنقل التيار المباشر "تدريجياً" وتم التعرف على تقنية نقل التيار المباشر عالي الجهد (HVDC).
لقد تطور توليد طاقة الرياح بسرعة في السنوات الأخيرة، وذلك وفقاً لتقرير عالمي لطاقة الرياح صادر عن المجلس العالمي لطاقة الرياح، بحيث بلغ إجمالي السعة العالمية لطاقة الرياح.
دخل توليد طاقة الرياح باعتباره الخيار الأول لتطوير الطاقة المتجددة، مرحلة من التطبيقات واسعة النطاق في العالم، وذلك مع زيادة قدرة توليد طاقة الرياح المتصلة بالشبكة الكهربائية.
التبادل الفعال للمعلومات بين مشغلي نظام النقل (TSO) ومشغلي أنظمة التوزيع (DSO) وشركات التوليد مطلوب لتخطيط الشبكة وعمليات أنظمة الطاقة.
يدمج النظام المتكامل متعدد الطاقة الموزع (DIMS) توليد ونقل واستهلاك وتخزين أنظمة طاقة متعددة، بما في ذلك الكهرباء والتدفئة والتبريد والغاز معاً، وهي تقنية فعالة لتحقيق أعلى الكفاءة والموثوقية،
في السنوات الأخيرة، أصبحت مصادر الطاقة المتجددة، مثل طاقة الرياح والطاقة الكهروضوئية (PV)، وهي ضرورية في تحديث الشبكة الكهربائية
مع زيادة الطلب على الطاقة، أصبح اتجاهاً حتمياً للاستفادة الكاملة من الأجيال الموزعة (DGs)، ونظراً لأن لها مزايا كبيرة مثل تقليل فقد الطاقة وخفض انبعاثات غازات الاحتباس الحراري.
يعتمد المشغلون على حساب حالة التشغيل (OSC) الذي يوفر حدود التشغيل الآمنة للشبكات لتقدير مستوى أمان أنظمة الطاقة، وفي السنوات الأخيرة ونظراً لتطور الاقتصاد الاجتماعي.
في المجمل تقترح هذه الدراسة طريقة لإدارة الطاقة، تعتمد على (SL)، والتي تأخذ بعين الاعتبار عدم اليقين من الطاقة الموزعة مثل الطاقة الكهروضوئية المنزلية والمركبات الكهربائية.
تم اقتراح نهجاً سريعاً ودقيقاً لتقييم الجهد في التوزيع المترابط مع الكهروضوئية باستخدام محاكاة الدقة الدقيقة، كما ويعتمد النهج المقترح على النماذج المدروسة، والتي تعتمد على البيانات باستخدام تقنيات التعلم الآلي.
ولفحص أداء النموذج المقترح؛ فقد تم تطبيقه على نظام اختبار وشبكة توزيع حقيقية، بحيث كشفت النتائج أن وضع الأجهزة في وقت واحد يؤدي إلى حل أكثر اقتصاداً مع موثوقية الخدمة المناسبة.