أساسيات علم البيانات

التقنيةأساسيات علم البياناتعلم البيانات

تطبيقات لغة البرمجة R في علوم البيانات

لدى R مجموعة متنوعة من التطبيقات في علوم البيانات، وعند التفكير في R في علوم البيانات يتم استخدامه على نطاق واسع في العديد من القطاعات لتحسين فعالية الخدمات والعمليات بالتعاون مع علماء البيانات ومحللي البيانات (R).

التقنيةأساسيات علم البياناتعلم البيانات

ما هي تقنية الانحدار في عملية التنقيب عن البيانات

يمكن تحليل الانحدار عادةً من مقارنة تأثيرات أنواع مختلفة من متغيرات السمات المقاسة على مقاييس متعددة مثل التنبؤ بأسعار الأراضي بناءً على المنطقة، والمساحة الإجمالية والمناطق المحيطة وتساعد هذه النتائج على إزالة الميزة غير المجدية وتقييم أفضل الميزات لحساب النماذج الفعالة.

التقنيةأساسيات علم البياناتعلم البيانات

الفرق بين عملية جمع البيانات وعملية التنقيب في البيانات

يُعد جمع البيانات والتنقيب عن البيانات من الإجراءات الهامة التي يمكن أن تساعد في التخطيط المسبق لبيانات العملاء وتنظيمها وإدارتها لمساعدة الفرق على التفوق في مساعدة العملاء بشكل جيد للغاية.

التقنيةأساسيات علم البياناتعلم البيانات

خوارزمية النمو FP-Growth في عملية التنقيب في البيانات

إنّ خوارزمية (FP-Growth) هذه طريقة فعالة وقابلة للتطوير لتنقي مجموعة كاملة من الأنماط المتكررة عن طريق تطور جزء النمط باستخدام بنية شجرة بادئة ممتدة؛ لتخزين المعلومات المضغوطة والحاسمة حول الأنماط المتسلسلة المسماة بشجرة النمط المتسلسل (شجرة FP). 

التقنيةأساسيات علم البياناتعلم البيانات

عملية استكشاف البيانات مقابل عملية التنقيب عن البيانات

هناك طريقتان أساسيتان لاستخراج البيانات من مصادر مختلفة في علم البيانات وعي استكشاف البيانات والتنقيب عن البيانات ويمكن أن يكون استكشاف البيانات جزءًا من التنقيب عن البيانات، حيث يكون الهدف هو جمع ودمج البيانات من مصادر مختلفة.

التقنيةأساسيات علم البياناتعلم البيانات

طريقة التقسيم للخوارزمية التصنيفية K-Mean

يُعرَّف إجراء إعادة إنشاء الكائنات بشكل متكرر إلى مجموعات لتحسين التقسيم على أنه نقل متكرر، ولا توجد إعادة توزيع للكائنات في أي مجموعة تظهر وبالتالي تزيل العملية وتتم استعادة المجموعات الناتجة بواسطة مرحلة التجميع في طريقة التقسيم لخوارزمية (K-Mean).

التقنيةأساسيات علم البياناتعلم البيانات

ما الفرق بين عملية التنقيب في البيانات وعملية تصوير البيانات

يتم استخدام عملية التنقيب في البيانات للعثور على القيم المتطرفة في مجموعة البيانات الكبيرة لإجراء التنبؤات باعتماد مجموعة واسعة من التقنيات، في حين أنّ تصور البيانات هو التمثيل الرسومي للبيانات والمعلومات المستخرجة من استخراج البيانات باعتماد العناصر المرئية مثل الرسم البياني.

التقنيةأساسيات علم البياناتعلم البيانات

ما الفرق بين عملية التنقيب في البيانات وتقنية الإحصاء

يرتبط كل من عملية التنقيب عن البيانات والإحصاءات بالتعلم من البيانات، حيث كلهم يتعلقون باكتشاف وتحديد الهياكل في البيانات بهدف تحويل البيانات إلى معلومات، وعلى الرغم من تداخل أغراض هاتين التقنيتين إلّا أنّ لهما مقاربات مختلفة.

التقنيةأساسيات علم البياناتعلم البيانات

ما هي عملية التنقيب عن البيانات المكانية والزمانية

يشير التنقيب عن البيانات المكانية إلى عملية استخراج المعرفة والعلاقات المكانية والأنماط المثيرة للاهتمام التي لا يتم تخزينها على وجه التحديد في قاعدة بيانات مكانية، ومن ناحية أخرى يشير التنقيب عن البيانات الزمنية إلى عملية استخراج المعرفة

التقنيةأساسيات علم البياناتعلم البيانات

ما هي عملية تلخيص البيانات Data Summarization

تلخيص البيانات هو مصطلح بسيط لاستنتاج قصير لنظرية أو فقرة كبيرة، ويتم كتابته في الكود وفي النهاية وتعلن النتيجة النهائية في شكل تلخيص البيانات، وتلخيص البيانات له أهمية كبيرة في التنقيب عن البيانات وكما في الوقت الحاضر يعمل الكثير من المبرمجين والمطورين على نظرية البيانات الضخمة.

التقنيةأساسيات علم البياناتعلم البيانات

عملية تدفق البيانات خلال التنقيب في البيانات

يتم إنشاء دفق البيانات من خلال مولدات دفق البيانات المختلفة، وبعد ذلك يتم تنفيذ تقنيات التنقيب عن البيانات لاستخراج المعرفة والأنماط من تدفقات البيانات، لذلك تحتاج هذه التقنيات إلى معالجة تدفقات بيانات متعددة الأبعاد ومتعددة المستويات وممر واحد وعبر الإنترنت.

التقنيةأساسيات علم البياناتعلم البيانات

تقنية تكامل البيانات في عملية التنقيب عن البيانات

لقد كان تكامل البيانات جزءًا لا يتجزأ من عمليات البيانات لأنّه يمكن الحصول على البيانات من عدة مصادر، وإنّها إستراتيجية تدمج البيانات من عدة مصادر لإتاحتها للمستخدمين في عرض موحد واحد يوضح حالتهم، وتوجد مصادر اتصال بين الأنظمة التي يمكن أن تتضمن قواعد بيانات متعددة أو مكعبات بيانات أو ملفات ثابتة.

التقنيةأساسيات علم البياناتعلم البيانات

تقنية المعالجة المسبقة للبيانات

تعمل المعالجة المسبقة للبيانات على تحويل البيانات إلى شكل تتم معالجته بسهولة وفعالية أكبر في استعمال البيانات والتعلم الآلي ومهام علوم البيانات الأخرى، وتُستخدم التقنيات عمومًا في المراحل الأولى من التعلم الآلي وخط أنابيب تطوير الذكاء الاصطناعي لضمان نتائج دقيقة.

التقنيةأساسيات علم البياناتعلم البيانات

عملية تنقيب القيم المتطرفة لمجموعة بيانات

بدلاً من استخدام مقاييس واقعية أو عن بعد تميز الأساليب القائمة على انحراف الاستثناءات أو القيم المتطرفة في عملية التنقيب عن البيانات من خلال فحص الاختلافات في السمات الأساسية للعناصر في المجموعة.

التقنيةأساسيات علم البياناتعلم البيانات

كيفية معالجة القيم المتطرفة خلال التنقيب عن البيانات

القيم المتطرفة هي قيم غير عادية في مجموعة البيانات الخاصة، ويمكن أن تشوه التحليلات الإحصائية وتنتهك افتراضاتها ولسوء الحظ سيواجه جميع المحللين القيم المتطرفة وسيضطرون إلى اتخاذ قرارات بشأن ما يجب فعله معها

التقنيةأساسيات علم البياناتعلم البيانات

عملية تقييم الأنماط في تنقيب البيانات

تستخدم معظم خوارزميات التنقيب عن قواعد الارتباط إطار دعم الثقة، وعلى الرغم من أنّ الحد الأدنى من الدعم وعتبات الثقة يساعد في استبعاد استكشاف عدد كبير من القواعد غير المهمة، إلّا أنّ العديد من القواعد التي تم إنشاؤها لا تزال غير مثيرة للاهتمام للمستخدمين.

التقنيةأساسيات علم البياناتعلم البيانات

ما هي قيود عملية التنقيب عن البيانات

يعد التنقيب عن البيانات أداة قوية في تحليل البيانات وهناك العديد من الفوائد للتنقيب في البيانات، وهناك أيضًا قيود بما في ذلك انتهاكات خصوصية المستخدم والتكاليف المرتبطة بالبنية التحتية المطلوبة لإدارة البيانات وتكامل النظام وتنفيذ مستودع البيانات.

التقنيةأساسيات علم البياناتعلم البيانات

كيفية إعداد البيانات لعملية التنقيب عن البيانات

إعداد البيانات هو عملية جمع البيانات ودمجها وتنظيمها بحيث يمكن استخدامها في الأعمال، وتعمل مرحلة إعداد البيانات على حل مثل العديد من مشكلات البيانات؛ لضمان أنّ مجموعة البيانات المستخدمة في مرحلة النمذجة مقبولة وذات جودة محسنة.

التقنيةأساسيات علم البياناتعلم البيانات

خوارزمية شجرة القرار Decision Tree Algorithm

تجلب خوارزمية أشجار القرار فئة مختلفة تمامًا من اللاخطية وتخدم حل المشكلات على اللاخطية في عملية التنقيب عن البيانات، وهذه الخوارزمية هي أفضل خيار لتقليد تفكير البشر على مستوى القرار وتصويره في شكل رسوم بيانية رياضية.