تحليل البيانات الطوبولوجية مع التطبيقات
يسمى الجزء من الرياضيات الذي يهتم بدراسة الشكل بالطوبولوجيا ويحاول تحليل البيانات الطوبولوجية تكييف طرق دراسة الشكل التي تم تطويرها في الرياضيات البحتة لدراسة شكل البيانات المحددة بشكل مناسب.
يسمى الجزء من الرياضيات الذي يهتم بدراسة الشكل بالطوبولوجيا ويحاول تحليل البيانات الطوبولوجية تكييف طرق دراسة الشكل التي تم تطويرها في الرياضيات البحتة لدراسة شكل البيانات المحددة بشكل مناسب.
علم البيانات هو تخصص مثير يسمح لك بتحويل البيانات الأولية إلى فهم وبصيرة ومعرفة، والهدف من "R for Data Science" هو المساعدة على تعلم أهم الأدوات في (R) والتي ستسمح لك بالقيام بعلوم البيانات.
يتضمن تحليل البيانات الاستكشافية (EDA) استخدام الرسومات والتصورات لاستكشاف فئات بيانات وتحليلها، حيث أنّ الهدف هو الاستكشاف والتأكد والتعلم بدلاً من تأكيد الفرضيات الإحصائية.
العلاقة بين تحليل البيانات وتحليل البيانات الاستكشافية: 1. التحقق من البيانات المفقودة والأخطاء الأخرى. 2. اكتساب أقصى قدر من التبصر في مجموعة البيانات وهيكلها الأساسي. 3. اكتشاف نموذجًا شحيحًا وهو نموذج يشرح البيانات بأقل عدد من متغيرات التوقع. 4. التحقق من الافتراضات المرتبطة بأي نموذج مناسب أو اختبار فرضية. 5. العمل على إنشاء قائمة بالقيم المتطرفة أو غيرها من الحالات الشاذة. 6. البحث عن تقديرات المعلمات وفترات الثقة المرتبطة بها أو هوامش الخطأ. 7. تحديد المتغيرات الأكثر تأثيراً.
يقوم خط أنابيب البيانات بجمع وتخزين البيانات الخاصة في موقع مركزي مع توفير الوصول لجميع المستخدمين من نقاط مختلفة وبصرف النظر عن توفير مصدر واحد للحقيقة يمكن أن تدعم خطوط البيانات أيضًا التعاون متعدد الوظائف.
هناك الكثير من برامج تحليل البيانات المتاحة، ومثلما يوجد الكثير من البيانات هناك أيضًا الكثير من البرامج والأدوات المتاحة للعمل معها تخزن مستودعات البيانات المستندة إلى السحابة كميات هائلة من بيانات الأعمال.
يتم تقديم نظام مرتبط بالتنبؤ بالتنقيب عن البيانات والتي بموجبها يختار المستخدم جدول قاعدة بيانات عن طريق واجهة مستخدم رسومية، ويُعد التنقيب عن البيانات عملية لمهمة معالجة البيانات المنظمة من البيانات الخام.
مع التقدم التكنولوجي العديدة وانتشارها الهائل ينتج كمية هائلة من البيانات النصية غير المهيكلة رقميًا، حيث يحتوي هذا النوع من البيانات على معلومات ومعرفة قيمة.
يُعد التعلم الآلي مقابل تحليلات البيانات أحد أكثر الموضوعات التي يتم الحديث عنها بين مصطلحات علوم البيانات، بحيث يقوم كلا المجالين على البيانات وهما من بين القطاعات الأكثر طلبًا.
إنّ التحليل متعدد الأبعاد هو تحليل كائنات الأبعاد المنظمة في تسلسلات هرمية ذات مغزى، ويسمح التحليل متعدد الأبعاد للمستخدمين بمراقبة البيانات من وجهات نظر مختلفة وهذا يمكنهم من تحديد الاتجاهات أو الاستثناءات في البيانات.
يُعد التنقيب عن النص أحد مكونات التنقيب عن البيانات الذي يتعامل بشكل خاص مع بيانات النص غير المهيكلة، ويمكن استخدام التنقيب عن النص كخطوة معالجة مسبقة لاستخراج البيانات أو كعملية قائمة بذاتها لمهام محددة.
يتضمن التحليل الدلالي الحصول على معنى البيانات وتسمى الطريقة المنطقية ومن التحليلات الممكنة لمرحلة بناء الجملة، حيث يتضمن فهم العلاقة بين الكلمات مثل الارتباط الدلالي أي عند استخدام كلمات مختلفة بطرق متشابهة.
التنقيب عن النص هو تطبيق التقنيات على البيانات النصية بهدف استنتاج المعلومات من البيانات، وتكمن مشكلة تحليل نصوص في أنّ الجمل أو النصوص الأطول ليست بيانات رقمية ولا فئوية.
تشير البنية التحتية للبيانات إلى المكونات المختلفة التي تسمح استهلاك البيانات وتخزينها ومشاركتها، ويُعد امتلاك استراتيجية البنية التحتية للبيانات الصحيحة أمرًا بالغ الأهمية للمؤسسات التي تسعى إلى إجراء تحول رقمي قائم على البيانات.
تصف تطبيقات إعداد البيانات تدفقات البيانات ولكن تمثل بشكل أفضل الإجراءات عالية المستوى التي يرغب المستخدمون في اتخاذها، ويستخدم التصميم لإجراءات مباشرة على البيانات الفعلية.
مع التطورات في تنقيب البيانات دخل مفهوم توزيع البيانات (DDM) حيز التنفيذ، حيث ينطوي التنقيب عن البيانات الموزعة على استخراج مجموعات البيانات بغض النظر عن مواقعها المادية، ويتمثل دورها الرئيسي في استخراج المعلومات من قواعد البيانات غير المتجانسة الموزعة واستخدامها في صنع القرار.
في الواقع تستعد تطبيقات التنقيب عن البيانات لتصبح المستهلك المسيطر للحوسبة الفائقة في المستقبل القريب، حيث هناك ضرورة لتطوير خوارزميات متوازية فعالة لتقنيات استخراج البيانات المختلفة، ومع ذلك فإنّ تصميم مثل هذه الخوارزميات يمثل تحديًا.
يبدو (OLAP) وعملية التنقيب عن البيانات متشابهين نظرًا لأنهما يعملان على البيانات لاكتساب المعرفة ولكن الاختلاف الرئيسي هو كيفية عملهما على البيانات، حيث توفر أدوات (OLAP) تحليل بيانات متنوع الأبعاد وملخصًا للبيانات.
يشير التنقيب عن البيانات إلى عملية استخراج المعلومات والأساليب والاتجاهات المفيدة من كميات البيانات الضخمة، بينما يشير التنقيب على الويب إلى عملية استخراج المعلومات من مستندات الويب والخدمات والارتباطات التشعبية وسجلات الخادم.
نماذج الانحدار التلقائي (AR) هي مجموعة فرعية من نماذج السلاسل الزمنية والتي يمكن استخدامها للتنبؤ بالقيم المستقبلية بناءً على الملاحظات القديمة، وتعتمد نماذج (AR) تقنيات الانحدار وتعتمد على الارتباط التلقائي لعمل تنبؤات دقيقة.
تعد تصفية البيانات مهمة أساسية في تحليل البيانات، مما يسمح للمحللين باستخراج مجموعات فرعية محددة من البيانات التي تفي بمعايير معينة، توفر (R) العديد من المكتبات والوظائف لتصفية البيانات،
تحدث معالجة البيانات بعد مرحلة جمع البيانات في خط أنابيب البيانات، وفي مرحلة المعالجة يتم إعداد البيانات للاستعمال ثم تخزينها في نظام يمكن الوصول إليه.
إنّ الحوسبة هي مجال متعدد يستخدم علوم البيانات والتكنولوجيا الرقمية لحل المشكلات عبر مجموعة واسعة من المجالات بما في الترميز في البيانات والبناء على المعرفة العلمية الأساسية.
يتم استخدام خطوط أنابيب البيانات لأداء تكامل البيانات ويمكن تقسيم احتياجات وحالات استخدام هذه للتحليلات والتطبيقات والعمليات إلى فئتين أساسيتين البيانات التاريخية أو البيانات في الوقت الفعلي.
تتمثل الخطوة الأولى في تنظيف البيانات السيئة في فحصها وتعيين مكان وجود مشاكل في تحليلك وبناء النموذج، ويمكن بدء هذه العملية بتعيين جميع الصفوف ذات القيم الخاصة في الحقل الهدف.
في معظم الحالات يتم تحليل البيانات غير المهيكلة عن طريق التنقيب وتساعد التطورات الحديثة في الشبكات العصبية المتكررة والشبكات العصبية التلافيفية وغيرها من الأساليب أيضًا في تخصيص الأنماط في البيانات غير المهيكلة.
أنّ التحليلات المعززة هي استخدام التقنيات التمكينية مثل التعلم الآلي والذكاء الاصطناعي للمساعدة في إعداد البيانات وإنشاء الرؤى وشرح البصيرة لزيادة كيفية استكشاف الأشخاص للبيانات وتحليلها في منصات التحليلات وذكاء الأعمال.
جمع البيانات هو جمع المعلومات من مصادر مختلفة وتهدف تحليلات البيانات إلى معالجتها للحصول على رؤى مفيدة منها، ويكمن الاختلاف بينهما بصرف النظر عن وظائفهم الأساسية في نمط الأنشطة المترابطة.
البيانات الوصفية هي معلومات وصفية تتعلق بالبيانات الفعلية، والإضافة إلى هذه البيانات الوصفية القياسية هناك بيانات وصفية موسعة تمثل نطاقًا أكبر وتحتوي عادةً على مجموعة متنوعة من المعلومات الفنية التفصيلية.
قد تبدو المؤسسات منظمة للغاية، ومن ناحية أخرى عبارة عن مجموعة من البيانات التي تم جمعها من البيانات والملفات والعديد من المصادر الأخرى، ويمكن استخدام هذه البيانات لتحسين العمل ويمكن تحقيق ذلك من خلال دمج البيانات.