ما هي المسلمات في الرياضيات

اقرأ في هذا المقال


المسلمات: هي البنية الأساسية في الرياضيات، والمسلمة هي بيان يفترض أنه صحيح دون أي دليل، المسلمات هي الافتراضات الأساسية المستخدمة لإثبات النظريات، بمجرد إثبات النظرية يمكن استخدامها في إثبات النظريات الأخرى، بهذه الطريقة يمكن بناء فرع كامل من الرياضيات من عدد قليل من المسلمات، إذ تعتمد المسلمات على الهندسة الإقليدية.

المسلمات في الرياضيات

تقدم الهندسة الإقليدية مثالا كلاسيكياً على المسلمات، إذ استند إقليدس في هندسته إلى خمسة مسلمات وخمسة “مفاهيم مشتركة” ، منها مسلمات خاصة بالهندسة، والمفاهيم الشائعة هي بديهيات عامة، الافتراضات الخمسة لإقليدس التي تتعلق بالهندسة هي افتراضات محددة حول الخطوط والزوايا والمفاهيم الهندسية الأخرى،هي:

  • أي نقطتين تصفان خطاً.
  • الخط طويل بلا حدود.
  • يتم تعريف الدائرة من خلال مركزها ونقطة على محيطها.
  • الزوايا القائمة كلها متساوية.
  • لنقطة وخط مستقيم لا يحتويان على النقطة، يوجد خط واحد فقط مواز للخط المستقيم المار بالنقطة.

المفاهيم الشائعة لإقليدس، والتي لها تطبيق في جميع فروع الرياضيات، وهي:

  • الأشياء المتساوية التي تضاف إليها أشياء متساوية تظل متساوية.
  • الأشياء المتساوية التي لها أشياء متساوية تطرح منها لها باقي متساوي.
  • أي شيئين يتطابقان مع بعضهما البعض متساويان.
  • الكل أكبر من أي جزء.

نبذة عن تاريخ المسلمات

تظهر الافتراضات بشكل بارز في أعمال عالم الرياضيات الإيطالي Guiseppe Peano (1858-1932) ، الذي أضفى الطابع الرسمي على لغة الحساب عن طريق اختيار مفاهيم أساسية منها، الصفر، الرقم (بمعنى الأعداد الصحيحة غير السالبة)، بالإضافة إلى ذلك افترض أن المفاهيم الثلاثة تطيع البديهيات أو المسلمات ومن هذه المسلمات هي الصفر هو رقم.

المسلمات والبديهيات

معنى المسلمة مرادف للبديهية، على الرغم من أن البديهية في بعض الأحيان تؤخذ على أنها تعني افتراضاً ينطبق على جميع فروع الرياضيات، في هذه الحالة يتم اعتبار المسلمة افتراضاً خاصا بنظرية أو فرع معين من الرياضيات، فالبديهية هي عبارة رياضية يفترض أنها صحيحة، وهناك خمس بديهيات أساسية للجبر وهي البديهية الانعكاسية، البديهية المتماثلة ، البديهية المتعدية ، البديهية المضافة والبديهية الضربية.

المصدر: The book of Axioms and Proof/mathigonكتاب الرياضيات والشكل الأمثل/ستفان هيلدبرانتكتاب الرياضيات للفضوليين/بيتر ام هيجنز


شارك المقالة: