تطبيقات التأثير الكهروضوئي Photoelectric effect applications

اقرأ في هذا المقال


ما هو التأثير الكهروضوئي photoelectric effect؟

يمكن استخدام الضوء الذي يحتوي على طاقة أعلى من نقطة معينة لتفكيك الإلكترونات، وتحريرها من سطح معدني صلب. يصطدم كل جسيم من الضوء، يسمى “الفوتون“، يصطدم بإلكترون ويستخدم بعضًا من طاقته لطرد الإلكترون. تنتقل بقية طاقة الفوتون إلى الشحنة السالبة الحرة، والتي تسمى “فوتو إلكترون”. لقد أحدثت هذه العملية ثورة في علم الفيزياء. أحضرت لنا تطبيقات التأثير الكهروضوئي “العين الكهربائية” التي توضع على الأبواب، وعدادات الضوء التي نستخدمها في التصوير الفوتوغرافي، وأيضاً في الألواح الشمسية والنسخ الضوئي.

وفقًا “لأينشتاين“، يتكون الضوء من حزم صغيرة، تسمى في البداية “الفوتونات الكمومية” (quanta) ثمّ “الفوتونات اللاحقة” (later photons). يمكن فهم كيف تتصرف الكميات تحت التأثير الكهروضوئي من خلال تجربة فكرية. تخيل كرة رخامية تدور في بئر، والتي ستكون مثل إلكترون مرتبط بذرة. عندما يدخل الفوتون، يصطدم بالكرة “أو الإلكترون”، ممّا يمنحه طاقة كافية للهروب من البئر. وهذا ما يفسر سلوك الضرب الخفيف للأسطح المعدنية.

تطبيقات التأثير الكهروضوئي:

تمّ استخدام الخلايا الكهروضوئية في الأصل للكشف عن الضوء، باستخدام أنبوب مفرغ يحتوي على كاثود، لإصدار الإلكترونات، وأنود لتجميع التيار الناتج. اليوم، تطورت هذه “الأنابيب الضوئية” إلى الثنائيات الضوئية القائمة على أشباه الموصلات والتي تستخدم في تطبيقات مثل الخلايا الشمسية واتصالات الألياف الضوئية.

الأنابيب المضاعفة الضوئية هي نوع مختلف من الأنبوب الضوئي، لكنّها تحتوي على العديد من الصفائح المعدنية التي تسمى “الديوندات” (dynodes). يتم إطلاق الإلكترونات بعد أن يضرب الضوء الكاثودات. ثم تسقط الإلكترونات على الدينود الأول، الذي يطلق المزيد من الإلكترونات التي تسقط على الدينود الثاني، ثمّ على الدينود الثالث، والرابع، وهكذا. كل دينود يضخم التيار؛ بعد حوالي (10) دينودات، يكون التيار قويًا بما يكفي للمضاعفات الضوئية لاكتشاف حتى الفوتونات المفردة.

تُستخدم أمثلة على ذلك في التحليل الطيفي “الذي يقسم الضوء إلى أطوال موجية مختلفة لمعرفة المزيد عن التركيبات الكيميائية للنجوم، على سبيل المثال”، والتصوير المقطعي المحوري (CAT) الذي يفحص الجسم. تشمل التطبيقات الأخرى للديودات الضوئية (photodiodes) والمضاعفات الضوئية (photomultipliers) ما يلي:

  • تكنولوجيا التصوير، بما في ذلك “أقدم” أنابيب كاميرات التلفزيون أو مكثفات الصورة.
  • تحليل المواد كيميائيًا بناءً على إلكتروناتها المنبعثة.
  • إعطاء معلومات نظرية حول كيفية انتقال الإلكترونات في الذرات بين حالات الطاقة المختلفة.
  • ولكن ربما كان أهم تطبيق للتأثير الكهروضوئي هو إطلاق “ثورة الكم”، وفقًا لما ذكره (Scientific American). قادت علماء الفيزياء إلى التفكير في طبيعة الضوء وبنية الذرات بطريقة جديدة تمامًا.

شرح تطبيقات التأثير الكهروضوئي:

تمتلك الأجهزة التي تعتمد على التأثير الكهروضوئي العديد من الخصائص المرغوبة، بما في ذلك إنتاج تيار يتناسب طرديًا مع شدة الضوء ووقت استجابة سريع جدًا. أحد الأجهزة الأساسية هو الخلية الكهروضوئية، أو الثنائي الضوئي. في الأصل، كان هذا أنبوبًا ضوئيًا، وهو أنبوب مفرغ يحتوي على كاثود مصنوع من معدن بوظيفة عمل صغيرة بحيث تنبعث الإلكترونات بسهولة. سيتم جمع التيار المنطلق من الصفيحة بواسطة أنود مثبت بجهد موجب كبير بالنسبة للقطب السالب.

تم استبدال الأنابيب الضوئية بصمامات ثنائية ضوئية قائمة على أشباه الموصلات يمكنها اكتشاف الضوء وقياس شدته والتحكم في الأجهزة الأخرى كوظيفة للإضاءة وتحويل الضوء إلى طاقة كهربائية. تعمل هذه الأجهزة بجهد منخفض، مقارنة بفجوات النطاق الخاصة بها، وتستخدم في التحكم في العمليات الصناعية، ومراقبة التلوث، والكشف عن الضوء داخل شبكات اتصالات الألياف البصرية، والخلايا الشمسية، والتصوير، والعديد من التطبيقات الأخرى.

تتكون الخلايا الضوئية من أشباه الموصلات ذات فجوات الحزمة التي تتوافق مع طاقات الفوتون المراد استشعارها. على سبيل المثال، تعمل عدادات التعرض للتصوير الفوتوغرافي والمفاتيح التلقائية لإضاءة الشوارع في الطيف المرئي، لذا فهي مصنوعة عادةً من كبريتيد الكادميوم. قد تكون أجهزة الكشف بالأشعة تحت الحمراء، مثل أجهزة الاستشعار لتطبيقات الرؤية الليلية، مصنوعة من كبريتيد الرصاص أو الزئبق الكادميوم تيلورايد.

تشتمل الأجهزة الكهروضوئية عادةً على تقاطع (pn) شبه موصل. لاستخدام الخلايا الشمسية، عادةّ ما تكون مصنوعة من السيليكون البلوري وتحويل حوالي (15) بالمائة من طاقة الضوء الساقط إلى كهرباء. غالبًا ما تستخدم الخلايا الشمسية لتوفير كميات صغيرة نسبيًا من الطاقة في بيئات خاصة مثل الأقمار الصناعية الفضائية وتركيبات الهاتف عن بُعد. إن تطوير مواد أرخص وكفاءات أعلى قد يجعل الطاقة الشمسية مجدية اقتصاديًا للتطبيقات واسعة النطاق.


شارك المقالة: