ما هي طرق ومصادر جمع البيانات لتحليلها
في عملية تحليل البيانات الضخمة يُعد "جمع البيانات" الخطوة الأولى قبل البدء في تحليل الأنماط أو المعلومات المفيدة في البيانات، حيث يجب جمع البيانات المراد تحليلها من مصادر صحيحة مختلفة.
في عملية تحليل البيانات الضخمة يُعد "جمع البيانات" الخطوة الأولى قبل البدء في تحليل الأنماط أو المعلومات المفيدة في البيانات، حيث يجب جمع البيانات المراد تحليلها من مصادر صحيحة مختلفة.
يسمح إصدار التعليمات البرمجية والبيانات للمطورين بالعمل على التعليمات البرمجية والبيانات دون التأثير على كود الإنتاج والبيانات ودون التأثير على أنشطة التطوير للمطورين الآخرينن، والكود والبيانات التي يعمل عليها المطور مرتبطة بمهمة.
يستخدم المحللون والمستخدمون التجاريون وعلماء البيانات والمطورون جميعًا برامج التحليلات التنبؤية لفهم العملاء والمنتجات والشركاء بشكل أفضل ولتحديد المخاطر والفرص المحتملة للشركة، حيث تقوم أهدافها على تسهيل عملية تحليل البيانات التنبؤية.
قد تستخدم عملية التنقيب عن البيانات التنبؤية أدوات قائمة على الخوارزمية لتصفح قاعدة بيانات العملاء للنظر في المعاملات السابقة من أجل دعم النظريات المتعلقة بأحجام المعاملات المستقبلية المحتملة.
مع استمرار تزايد الطلب على البيانات الضخمة من المهم للمهنيين خاصة أولئك الذين ليس لديهم فهم لعلوم البيانات أو تحليل الأعمال أن يتعلموا أساسيات تكنولوجيا التحليلات التنبؤية وكيف تعمل.
تم تصميم نماذج التحليلات التنبؤية لتقييم البيانات التاريخية واكتشاف الأنماط ومراقبة الاتجاهات واستخدام تلك المعلومات للتنبؤ بالاتجاهات المستقبلية، بحيث تتضمن نماذج التحليلات التنبؤية الشائعة التصنيف والتجميع ونماذج السلاسل الزمنية.
مع استخدام خوارزميات عملية التنقيب عن البيانات بشكل بارز يساعد البعض الآخر في استخراج البيانات والتعلم، حيث إنّه يدمج تقنيات مختلفة بما في ذلك التعلم الآلي والإحصاءات، والتعرف على الأنماط والذكاء الاصطناعي وأنظمة قواعد البيانات.
إنّ الجدولة هي طريقة لعرض البيانات الرقمية في الصفوف والأعمدة بطريقة منطقية ومنهجية للمساعدة في المقارنة والتحليل الإحصائي، بحيث يسمح بإجراء مقارنة أسهل من خلال تقريب البيانات ذات الصلة من بعضها البعض ويساعد في التحليل الإحصائي والتفسير.
تُعد تحليلات البيانات اليوم أكثر تعقيدًا مما كانت عليه في الستينيات وهناك خوارزميات يمكنها أتمتة العديد من المهام، ولقد ثبت مرارًا وتكرارًا أنّ (EDA) الفعالة توفر رؤى لا تقدر بثمن لا تستطيع الخوارزمية القيام بها.
تشير التحليلات التنبؤية إلى اعتماد كل من البيانات الجديدة والتاريخية والخوارزميات الإحصائية، أمّا عملية التنقيب عن البيانات تشير إلى تقنيات التعلم الآلي للتنبؤ بالنشاط والأنماط والاتجاهات المستقبلية.
مع مرور السنين تستمر الشركات التي تعتمد على البيانات في إثبات أنّ العملاء في الوقت الحالي يفضلون تجربة مصممة خصيصًا على متابعة خط أنابيب المبيعات المعمم، وظهر عدد كبير من تقنيات وأساليب وأدوات تقسيم بيانات العملاء على مر السنين لجعل الشركات أكثر مهارة في التعامل مع بيانات الشرائح.
وفقًا لشعبية لغات البرمجة تُعد Python وJava من أكثر لغات البرمجة انتشاراً ويتم اعتماد Python بكثافة في الخلفية لمعالجة البيانات، وتستخدم Java أيضًا من قبل العديد من الشركات لمعالجة خوارزميات واجهة المستخدم الخلفية.
شعبية Python وR سواء بين علماء البيانات أو في مجتمع علوم البيانات عالية جدًا، ولكن هناك بعض المواقف التي يُفضل فيها Java على Python وهناك بعض المواقف التي يكون من المفيد فيها معرفة Java وكذلك في علم البيانات.
يشير التنقيب عن البيانات إلى عملية استخراج المعلومات والأساليب والاتجاهات المفيدة من كميات البيانات الضخمة، بينما يشير التنقيب على الويب إلى عملية استخراج المعلومات من مستندات الويب والخدمات والارتباطات التشعبية وسجلات الخادم.
تختلف العملية والنتيجة بين تنظيف البيانات وتحويل البيانات، أثناء تنظيف البيانات يتم فحص مجموعة البيانات وتوصيفها ومن خلال التفتيش يتم الكشف عن الأخطاء ثم يتم تعديل الأخطاء ومعالجة التناقضات.
عندما تتم مناقشة علم البيانات اليوم فعادةً ما يتعلق الأمر بأحدث وأكبر خوارزمية التعلم العميق أو التعلم الآلي والتنبؤ، ولكن يجب على عالم البيانات إنشاء واستيعاب العديد من المفاهيم والممارسات الأساسية لتنبؤ البيانات.
يتيح علم البيانات للمؤسسات القدرة على تسريع الابتكار وتحويل كيفية عملها من خلال معالجة البيانات وتحليلها التي تعتمد الطرق والعمليات والخوارزميات والأنظمة العلمية.
يتمثل الهدف الرئيسي للتحليلات المرئية وعلوم البيانات في تحديد الرؤى القابلة للتنفيذ التي تؤثر على العمليات التجارية لزيادة الإنتاجية، وأتمتة المهام العادية تعمل على توفير الوقت للابتكار.
يميل تحليل البيانات إلى تضمين تحليل المستندات النصية وتنظم مجموعات البيانات الجدولية البيانات التي يمكن الوصول إليها آليًا (الأرقام والسلاسل) في سلسلة من السجلات.
توفر بيئة علوم البيانات الكثير من الوقت وتمكن علماء البيانات من تطوير عملهم، حيث تساعد بيئة علوم البيانات على توفير الخدمات والأدوات للاستعلام عن البيانات ومعالجة البيانات.
من المعروف أنّ إحدى المهام الرئيسية المخصصة عادة لعلماء البيانات هي "التنبؤ" بالمستقبل، وفي الوقت نفسه لا يمكن التنبؤ بمستقبل علماء البيانات كمهنة اليوم بأي حال من الأحوال.
هناك القليل جدًا من الاستخدام الواسع لـ (Haskell) كمنصة لعلوم البيانات حتى الآن لمعرفة أفضل طريقة لاستخدامها، وهاسكل هي لغة برمجة رائعة للعديد من المهام.
يسمى الجزء من الرياضيات الذي يهتم بدراسة الشكل بالطوبولوجيا ويحاول تحليل البيانات الطوبولوجية تكييف طرق دراسة الشكل التي تم تطويرها في الرياضيات البحتة لدراسة شكل البيانات المحددة بشكل مناسب.
علم البيانات هو تخصص مثير يسمح لك بتحويل البيانات الأولية إلى فهم وبصيرة ومعرفة، والهدف من "R for Data Science" هو المساعدة على تعلم أهم الأدوات في (R) والتي ستسمح لك بالقيام بعلوم البيانات.
يتضمن تحليل البيانات الاستكشافية (EDA) استخدام الرسومات والتصورات لاستكشاف فئات بيانات وتحليلها، حيث أنّ الهدف هو الاستكشاف والتأكد والتعلم بدلاً من تأكيد الفرضيات الإحصائية.
العلاقة بين تحليل البيانات وتحليل البيانات الاستكشافية: 1. التحقق من البيانات المفقودة والأخطاء الأخرى. 2. اكتساب أقصى قدر من التبصر في مجموعة البيانات وهيكلها الأساسي. 3. اكتشاف نموذجًا شحيحًا وهو نموذج يشرح البيانات بأقل عدد من متغيرات التوقع. 4. التحقق من الافتراضات المرتبطة بأي نموذج مناسب أو اختبار فرضية. 5. العمل على إنشاء قائمة بالقيم المتطرفة أو غيرها من الحالات الشاذة. 6. البحث عن تقديرات المعلمات وفترات الثقة المرتبطة بها أو هوامش الخطأ. 7. تحديد المتغيرات الأكثر تأثيراً.
يمكن أن تواجه حلول عملية تنظيف البيانات العديد من المشكلات أثناء عملية تنقية البيانات وتحتاج إلى فهم المشاكل المختلفة ومعرفة كيفية معالجتها.
مع التطورات في تنقيب البيانات دخل مفهوم توزيع البيانات (DDM) حيز التنفيذ، حيث ينطوي التنقيب عن البيانات الموزعة على استخراج مجموعات البيانات بغض النظر عن مواقعها المادية، ويتمثل دورها الرئيسي في استخراج المعلومات من قواعد البيانات غير المتجانسة الموزعة واستخدامها في صنع القرار.
في الواقع تستعد تطبيقات التنقيب عن البيانات لتصبح المستهلك المسيطر للحوسبة الفائقة في المستقبل القريب، حيث هناك ضرورة لتطوير خوارزميات متوازية فعالة لتقنيات استخراج البيانات المختلفة، ومع ذلك فإنّ تصميم مثل هذه الخوارزميات يمثل تحديًا.
يبدو (OLAP) وعملية التنقيب عن البيانات متشابهين نظرًا لأنهما يعملان على البيانات لاكتساب المعرفة ولكن الاختلاف الرئيسي هو كيفية عملهما على البيانات، حيث توفر أدوات (OLAP) تحليل بيانات متنوع الأبعاد وملخصًا للبيانات.