كيفية الحصول على البيانات وفهمها
علم البيانات عبارة عن مزيج من الأدوات والخوارزميات ومبادئ التعلم الآلي المختلفة بهدف اكتشاف الأنماط المخفية من البيانات الأولية، وعادةً ما يشرح محلل البيانات ما يجري من خلال معالجة محفوظات البيانات.
علم البيانات عبارة عن مزيج من الأدوات والخوارزميات ومبادئ التعلم الآلي المختلفة بهدف اكتشاف الأنماط المخفية من البيانات الأولية، وعادةً ما يشرح محلل البيانات ما يجري من خلال معالجة محفوظات البيانات.
تُعتبر النماذج البسيطة التي تستخدم مدخلات بيانات أقل مكانًا جيدًا للبدء، ويتم استعمال مصادر البيانات الخارجية الأخرى لإضافة قيمة توضيحية ولمزيد من الموضوعية والتحليل القوي، كما يتم زيادة القدرة التنبؤية للنموذج من خلال تضمين المتغيرات التي من المتوقع أن تؤثر على النتائج.
في مخطط فين لدرو كونواي إنّ البيانات هي الجزء الأساسي في علم البيانات، والبيانات هي سلعة يتم تداولها الكترونيا والقدرة على إدارة الملفات النصية في سطر الأوامر وتعلم العمليات الموجهة والتفكير حسابيًا، وهي مهارات القرصنة التي تؤدي إلى اختراق ناجح لقرصنة البيانات.
تعمل الشبكات التلافيفية على التحقق على الصور ومهام الرؤية الحاسوبية، ورؤية الكمبيوتر هي أحد مجالات الذكاء الاصطناعي (AI) التي تمكن أجهزة الكمبيوتر، والأنظمة من استنتاج معلومات ذات مغزى وذلك بناءً على هذه المدخلات يمكنها اتخاذ إجراءات.
نظرًا لمشكلة المجال والبيانات فإنّ الغرض من دورة حياة علم البيانات (DSLC) هو توليد المعرفة والاستنتاجات والإجراءات، بحيث يهدف إطار عمل (PCS) إلى علم البيانات الحقيقي من خلال المبادئ الأساسية.
تكشف وظيفة الارتباط التلقائي (ACF) عن كيف يتغير الارتباط بين أي قيمتين للإشارة مع تغير الفصل بينهما، حيث إنّه مقياس زمني لذاكرة العملية العشوائية، ولا يكشف عن أي معلومات حول محتوى التردد للعملية.
منذ إنشاء عملية تقييم الأنماط في التنقيب عن البيانات يتم إجراء قدر كبير من الأبحاث في مجال التنقيب عن الأنماط التي تستهدف أنواعًا مختلفة من الأنماط بالإضافة إلى المشكلات والتحديات التي تمت مواجهتها أثناء استخراجها
ما هي أنواع مصادر البيانات في عملية التنقيب عن البيانات 1- الملفات المسطحة Flat Files 2- قواعد البيانات المترابطة 3- مستودع البيانات 4- قواعد بيانات المعاملات 5- قواعد بيانات الوسائط المتعددة 6- قاعدة البيانات المكانية 7- قواعد بيانات السلاسل الزمنية 8- شبكة الويب العالمية WWW 9- البيانات الناتجة من أدوات عملية التنقيب عن البيانات
أنواع جداول عملية جدولة البيانات أولاً: بناءً على مدى التغطية 1- الجدول البسيط 2- الجدول المعقد 3- الجدول المصنف عبر المدخلات ثانياً: على أساس الهدف 1- عام أو جدول مرجعي 2- جدول الملخص ثالثاً: بناء على طبيعة البيانات 1- الجدول الأصلي 2- الجدول المشتق
يُعد التنقيب عن البيانات أداة مفيدة ومتعددة الاستخدامات للأعمال التنافسية اليوم، وفي الأساس الدافع وراء التنقيب عن البيانات سواء كانت تجارية أو علمية، هو نفسه الحاجة إلى العثور على معلومات مفيدة في البيانات لتمكين اتخاذ قرارات أفضل أو فهم أفضل للعالم من حولنا.
يوجد مجالان مختلفان لعلوم الكمبيوتر مقابل علم البيانات ولكنهما يندرجان تحت نفس المظلة عند حثهما على التقدم بطلب لاستخدام التقنيات، وتعطي علوم الكمبيوتر وجهة لاستعمال التقنيات في حساب البيانات بينما يتيح (Data Science) العمل على البيانات الحالية لجعلها متاحة لأغراض مفيدة.
إنّ أدوات تصور البيانات التي تتضمن دعم تدفق البيانات وتكامل الذكاء الاصطناعي والتضمين والتعاون والاستكشاف التفاعلي وقدرات الخدمة التلقائية لتمثيل البيانات تسهل كيفية جمع وتحليل البيانات والحصول على النتائج.
إنّ طريقة الوصول إلى التخزين الظاهري (VSAM) هي طريقة وصول لنظام تشغيل حاسب مركز ويتم توسيعه باستخدام طريقة وصول إلى ملف (IBM) سابقة، وباستخدام (VSAM) يمكن للمؤسسة تنظيم السجلات في ملف بالتسلسل المادي أو التسلسل المنطقي باستخدام مفتاح رقم معرف الموظف.
هناك العديد من الأسباب لأرشفة البيانات وذلك للاحتفاظ بالبيانات التاريخية أو لمجرد النسخ الاحتياطي للموارد، والأرشفة تحفظ البيانات على المدى الطويل بحيث يمكن استرجاعها عند الضرورة، وأرشيف البيانات هو مكان لتخزين البيانات المهمة ولكن لا يلزم الوصول إليها أو تعديلها بشكل متكرر
إنّ تقنية تجميع البيانات (Binning) يُطلق عليها أيضًا التميية وهي تقنية لتقليل العلاقة الأساسية للبيانات المستمرة والمنفصلة ويجمع Binning القيم المرتبطة معًا في صناديق لتقليل عدد القيم المميزة، ويمكن لـ (Binning) تطوير قيمة النموذج من خلال تحسين العلاقة بين السمات.
من الصعب تتبع البيانات الخام أو فهمها، ولهذا السبب يجب معالجتها بشكل مسبق قبل استرداد أي معلومات منها، ويُعد تحويل البيانات تقنية أساسية للمعالجة المسبقة للبيانات يجب إجراؤها على البيانات قبل استخراج البيانات لتوفير أنماط يسهل فهمها.
أثناء التنقيب في البيانات ستجد أنّ الاتصال بين متغير الفئة ومجموعة السمات غير محدد، وهذا يعني أنّه لا يمكن افتراض تسمية الفصل لسجل الاختبار بيقين مطلق حتى لو كانت مجموعة السمات هي نفسها أمثلة التدريب
من خلال طرق التجميع المختلفة لعملية التنقيب عن البيانات يمكن تجميع البيانات في مجموعات، وهذه المهمة ضرورية لفهم العلاقة بين مجموعات البيانات الخاصة، ومع ذلك فإنّ طرق الرسم البياني العنقودي في عملية التنقيب في البيانات لها عيوبها المختلفة.
يبحث علماء البيانات وقادة الأعمال في جميع أنحاء العالم عن طرق جديدة لفهم لغات برمجة الكمبيوتر، ويمكن العثور على العديد من حزم R والمكتبات لأداء مهام مختلفة في (Data Science).
للنظر في استخدام برمجة R لعلوم البيانات ينصب التركيز على القدرات الإحصائية والرسومية للغة R ولدراسة R لعلوم البيانات يتعين على المرء أن يتعلم كيفية تنفيذ الدراسات الإحصائية وإنشاء تصورات البيانات.
الانحدار الخطي هو طريقة تعلم تقارن متغيرات الإدخال والنواتج بناءً على البيانات المسمى، حيث يتم استخدامه لإيجاد العلاقة بين المتغيرين والتنبؤ بالنتائج المستقبلية بناءً على العلاقات السابقة.
أشكال استخدام عملية تحليل البيانات الاستكشافية: 1- الرعاية الصحية 2- التجزئة 3- الرياضات الاحترافية 4- التاريخ 5- التسويق 6- التدقيق 7- الجغرافيا
ما هي مزايا تحليل البيانات الاستكشافية: 1. اكتساب رؤى حول الاتجاهات والأنماط الأساسية 2. تحسين فهم المتغيرات 3. معالجة بيانات أفضل لتوفير الوقت 4. اتخاذ قرارات تستند إلى البيانات
نظرًا لأن المؤسسات تقوم بإنشاء وجمع بيانات أكثر من أي وقت مضى من مصادر بيانات مختلفة فإن الحاجة إلى تجميع جميع البيانات في مكان واحد لاستخراج القيمة تتزايد وهذا هو المكان الذي يكون فيه برنامج تكامل البيانات مفيدًا.
تستخرج أدوات تحويل البيانات البيانات من مصادر وتنسيقات مختلفة وتعالج تلك البيانات وتنقحها لتحميلها في مستودعات البيانات أو غيرها من الأدوات في مكدس تكنولوجيا البيانات.
توفر لغة Java مجموعة جيدة من المكتبات المدمجة التي يمكن استخدامها لتحليلات البيانات وعلوم البيانات والتعلم الآلي و(Apache Spark) هو محرك تحليلات مفتوح المصدر يستخدمه علماء البيانات لمعالجة البيانات على نطاق واسع.
على عكس بعض اللغات الأخرى المستخدمة على نطاق واسع لعلوم البيانات فإنّ (Java) سريعة وتعد السرعة أمرًا بالغ الأهمية لإنشاء تطبيقات واسعة النطاق، كما أن Java مناسبة تمامًا لذلك.
تُعد (Java) لغة سريعة جدًا مقارنة بمنافسيها ممّا يساعد على إنشاء برامج أكثر قابلية للصيانة وقابلة للتطوير وكما أنّه سهل الحمل بسبب وظيفة الكتابة مرة واحدة والاستعمال في أي مكان.
يقوم دور تحليل استكشاف البيانات على استخدام الأهداف التي تم تحقيقها، وبعد تنسيق البيانات يشير التحليل الذي تم إجراؤه إلى الأنماط والاتجاهات التي تساعد في اتخاذ الإجراءات المناسبة المطلوبة لتحقيق الأهداف.
يمكن لبيانات المستند في تنقيب البيانات تعبئة ملفات الإدخال أو إنشاء فهارس للصفحات المؤرشفة أو تحويل الرسائل إلى نماذج بديلة، وعلاوة على ذلك يمكن أن تساعد البيانات المستخرجة من المستندات الشركات في اتخاذ قرارات أكثر ذكاءً واتباع التوجيهات التنظيمية.